На чем основан эффект доплера

Эффект Доплера

Вам, наверняка, хоть раз в жизни доводилось стоять у дороги, по которой проносится машина со спецсигналом и включенной сиреной.

Пока вой сирены приближается, его тон выше, затем, когда машина поравняется с вами, он понижается, и, наконец, когда машина начинает удаляться, он понижается еще, и получается знакомое: ййййииииээээЭААААОоооуууумммм — такой примерно звукоряд.

Сами того, возможно, не сознавая, вы при этом наблюдаете фундаментальнейшее (и полезнейшее) свойство волн.

Волны — вообще вещь странная. Представьте себе пустую бутылку, болтающуюся неподалеку от берега. Она гуляет вверх-вниз, к берегу не приближаясь, в то время как вода, казалось бы, волнами набегает на берег. Но нет — вода (и бутылка в ней) — остаются на месте, колеблясь лишь в плоскости, перпендикулярной поверхности водоема.

Иными словами, движение среды, в которой распространяются волны, не соответствует движению самих волн.

По крайней мере, футбольные болельщики хорошо это усвоили и научились использовать на практике: пуская «волну» по стадиону, они сами никуда не бегут, просто встают и садятся в свой черед, а «волна» (в Великобритании это явление принято называть «мексиканской волной») бежит вокруг трибун.

Волны принято описывать их частотой (число волновых пиков в секунду в точке наблюдения) или длиной (расстояние между двумя соседними гребнями или впадинами). Эти две характеристики связаны между собой через скорость распространения волны в среде, поэтому, зная скорость распространения волны и одну из главных волновых характеристик, можно легко рассчитать другую.

Как только волна пошла, скорость ее распространения определяется только свойствами среды, в которой она распространяется, — источник же волны никакой роли больше не играет.

По поверхности воды, например, волны, возбудившись, далее распространяются лишь в силу взаимодействия сил давления, поверхностного натяжения и гравитации.

Акустические же волны распространяются в воздухе (и иных звукопроводящих средах) в силу направленной передачи перепада давлений. И ни один из механизмов распространения волн не зависит от источника волны. Отсюда и эффект Доплера.

Давайте еще раз задумаемся над примером с воющей сиреной. Предположим для начала, что спецмашина стоит. Звук от сирены доходит до нас потому, что упругая мембрана внутри нее периодически воздействует на воздух, создавая в нем сжатия — области повышенного давления, — чередующиеся с разрежениями.

Пики сжатия — «гребни» акустической волны — распространяются в среде (воздухе), пока не достигнут наших ушей и не воздействуют на барабанные перепонки, от которых поступит сигнал в наш головной мозг (именно так устроен слух).

Частоту воспринимаемых нами звуковых колебаний мы по традиции называем тоном или высотой звука: например, частота колебаний 440 герц в секунду соответствует ноте «ля» первой октавы. Так вот, пока спецмашина стоит, мы так и будем слышать неизмененный тон ее сигнала.

Но как только спецмашина тронется с места в вашу сторону, добавится новый эффект. За время с момента испускания одного пика волны до следующего машина проедет некоторое расстояние по направлению к вам. Из-за этого источник каждого следующего пика волны будет ближе.

В результате волны будут достигать ваших ушей чаще, чем это было, пока машина стояла неподвижно, и высота звука, который вы воспринимаете, увеличится. И, наоборот, если спецмашина тронется в обратном направлении, пики акустических волн будут достигать ваших ушей реже, и воспринимаемая частота звука понизится.

Вот и объяснение тому, почему при проезде машины со спецсигналами мимо вас тон сирены понижается.

Мы рассмотрели эффект Доплера применительно к звуковым волнам, но он в равной мере относится и к любым другим.

Если источник видимого света приближается к нам, длина видимой нами волны укорачивается, и мы наблюдаем так называемое фиолетовое смещение (из всех видимых цветов гаммы светового спектра фиолетовому соответствуют самые короткие длины волн). Если же источник удаляется, происходит кажущееся смещение в сторону красной части спектра (удлинение волн).

Этот эффект назван в честь Кристиана Иоганна Доплера, впервые предсказавшего его теоретически. Эффект Доплера меня на всю жизнь заинтересовал благодаря тому, как именно он был впервые проверен экспериментально.

Голландский ученый Кристиан Баллот (Christian Buys Ballot, 1817–1870) посадил духовой оркестр в открытый железнодорожный вагон, а на платформе собрал группу музыкантов с абсолютным слухом. (Идеальным слухом называется умение, выслушав ноту, точно назвать её.).

Всякий раз, когда состав с музыкальным вагоном проезжал мимо платформы, духовой оркестр тянул какую-либо ноту, а наблюдатели (слушатели) записывали слышащуюся им нотную партитуру.

Как и ожидалось, кажущаяся высота звука оказалась в прямой зависимости от скорости поезда, что, собственно, и предсказывалось законом Доплера.

Эффект Доплера находит широкое применение и в науке, и в быту. Во всем мире он используется в полицейских радарах, позволяющих отлавливать и штрафовать нарушителей правил дорожного движения, превышающих скорость.

Пистолет-радар излучает радиоволновой сигнал (обычно в диапазоне УКВ или СВЧ), который отражается от металлического кузова вашей машины. Обратно на радар сигнал поступает уже с доплеровским смещением частоты, величина которого зависит от скорости машины.

Сопоставляя частоты исходящего и входящего сигнала, прибор автоматически вычисляет скорость вашей машины и выводит ее на экран.

Несколько более эзотерическое применение эффект Доплера нашел в астрофизике: в частности, Эдвин Хаббл, впервые измеряя расстояния до ближайших галактик на новейшем телескопе, одновременно обнаружил в спектре их атомного излучения красное доплеровское смещение, из чего был сделан вывод, что галактики удаляются от нас (см. Закон Хаббла). По сути, это был столь же однозначный вывод, как если бы вы, закрыв глаза, вдруг услышали, что тон звука двигателя машины знакомой вам модели оказался ниже, чем нужно, и сделали вывод, что машина от вас удаляется. Когда же Хаббл обнаружил к тому же, что чем дальше галактика, тем сильнее красное смещение (и тем быстрее она от нас улетает), оно понял, что Вселенная расширяется. Это стало первым шагом на пути к теории Большого взрыва — а это вещь куда более серьезная, чем поезд с духовым оркестром.

Источник: http://elementy.ru/trefil/21079/Effekt_Doplera

Эффект Доплера для чайников: суть явления, применение, формула

Эффект Доплера – важнейшее явление в физике волн. Прежде чем перейти напрямую к сути вопроса, немного вводной теории.

Колебание – в той или иной степени повторяющийся процесс изменения состояния системы около положения равновесия.

Волна – это колебание, которое способно удаляться от места своего возникновения, распространяясь в среде. Волны характеризуются амплитудой, длиной и частотой.

Звук, который мы слышим – это волна, т.е. механические колебания частиц воздуха, распространяющиеся от источника звука.

Вооружившись сведениями о волнах, перейдем к эффекту Доплера. А если Вы хотите узнать больше о колебаниях, волнах и резонансе – добро пожаловать в отдельную статью нашего блога.

Суть эффекта Доплера

Самый популярный и простой пример, объясняющий суть эффекта Доплера – неподвижный наблюдатель и машина с сиреной. Допустим, Вы стоите на остановке. К Вам по улице движется карета скорой помощи со включенной сиреной.

Частота звука, которую Вы будете слышать по мере приближения машины, не одинакова. Сначала звук будет более высокой частоты, когда машина поравняется с остановкой. Вы услышите истинную частоту звука сирены, а по мере удаления частота звука будет понижаться.

Это и есть эффект Доплера.

Эффект Доплера

Если у Кэпа спросят, кто открыл эффект Доплера, он не задумываясь ответит, что это сделал Доплер. И будет прав.

Данное явление, теоретически обоснованное в 1842 году австрийским физиком Кристианом Доплером, было впоследствии названо его именем.

Сам Доплер вывел свою теорию, наблюдая за кругами на воде и предположив, что наблюдения можно обобщить для всех волн. Экспериментально подтвердить эффект Доплера для звука и света удалось позднее.

Выше мы рассмотрели пример Эффект Доплера для звуковых волн. Однако эффект Доплера справедлив не только для звука. Различают:

  • Акустический эффект Доплера;
  • Оптический эффект Доплера;
  • Эффект Доплера для электромагнитных волн;
  • Релятивистский эффект Доплера.

Кристиан Доплер (1803-1853)

Именно эксперименты со звуковыми волнами помогли дать первое экспериментальное подтверждение этому эффекту.

Экспериментальное подтверждение эффекта Доплера

Подтверждением правильности рассуждений Кристиана Доплера связано с одним из интересных и необычных физических экспериментов.

В 1845 году метеоролог из Голландии Христиан Баллот взял мощный локомотив и оркестр, состоящий из музыкантов с абсолютным слухом.

Часть музыкантов – это были трубачи – ехали на открытой площадке поезда и постоянно тянули одну и ту же ноту. Допустим, это была ля второй октавы. Другие музыканты находились на станции и слушали, что играют их коллеги.

Абсолютный слух всех участников эксперимента сводил вероятность ошибки к минимуму. Эксперимент длился два дня, все устали, было сожжено много угля, но результаты того стоили. Оказалось, что высота звука действительно зависит от относительной скорости источника или наблюдателя (слушателя).

Первые эксперименты по подтверждению эффекта Доплера

Применение эффекта Доплера

Одно из наиболее широко известных применений – определение скорости движения объектов при помощи датчиков скорости. Радиосигналы, посылаемые радаром, отражаются от машин и возвращаются обратно. При этом, смещение частоты, с которой сигналы возвращаются, имеет непосредственную связь со скоростью машины. Сопоставляя скорость и изменение частоты, можно вычислять скорость.

Эффект Доплера широко применяется в медицине. На нем основано действие приборов ультразвуковой диагностики. Существует отдельная методика в УЗИ, называемая доплерографией.

Эффект Доплера также используют в оптике, акустике, радиоэлектронике, астрономии, радиолокации.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Открытие эффекта Доплера сыграло важную роль в ходе становления современной физики. Одно из подтверждений теории Большого взрыва основывается на этом эффекте. Как связаны эффект Доплера и Большой взрыв? Согласно теории Большого взрыва, Вселенная расширяется.

При наблюдении удаленных галактик наблюдается красное смещение – сдвиг спектральных линий в красную сторону спектра. Объясняя красное смещение при помощи эффекта Доплера, можно сделать вывод, согласующийся с теорией: галактики удаляются друг от друга, Вселенная расширяется.

Красное и синее смещение при приближении и отдалении объектов

Формула для эффекта Доплера

Когда теорию эффекта Доплера подвергали критике, одним из аргументов оппонентов ученого был факт, что теория помещалась всего на восьми листах, а вывод формулы эффекта Доплера не содержал громоздких математических выкладок. На наш взгляд, это только плюс!

Пусть u – скорость приемника относительно среды, v – скорость источника волн относительно среды, с  – скорость распространения волн в среде, w0 – частота волн источника. Тогда формула эффекта Доплера в самом общем случае будет выглядеть так:

Здесь w – частота, которую будет фиксировать приемник.

Релятивистский эффект Доплера

В отличие от классического эффекта Доплера при распространении электромагнитных волн в вакууме для расчета эффекта Доплера следует применять СТО и учитывать релятивистское замедление времени.

Пусть света – с, v – скорость источника относительно приемника, тета – угол между направлением на источник и вектором скорости, связанным с системой отсчета приемника.

Тогда формула для релятивистского эффекта Доплера будет иметь вид:

Сегодня мы рассказали о важнейшем эффекте нашего мира – эффекте Доплера. Хотите научиться решать задачи на эффект Доплера быстро и легко? Спросите у наших авторов, и они охотно поделятся своим опытом! А в конце – еще немного про теорию Большого взрыва и эффект Доплера.

Источник: https://Zaochnik.ru/blog/effekt-doplera-dlya-chajnikov-sut-yavleniya-primenenie/

Эффект Доплера

Эффект Доплера – это изменение частоты и длины волн (оно регистрируется приёмником), порождённое перемещениями, как источника волн, так и приёмника.Причём, движения среды, в коей происходит перемещение волн, не связано с этим перемещением, а волновая скорость зависит от характеристик этой среды. Сам волновой источник уже не может влиять на дальнейшее поведение волн.

Удаляющийся источник будет иметь спектральное смещение в красную сторону, а длина волн его будет увеличиваться.

Основными волновыми характеристиками являются частота и длина волны. Частотой считается количество пиков волн, произошедшее в точке наблюдения за секунду. Длина волны – это расстояние между её «гребнями» или «впадинами». Эти две характеристики связывает скорость, с которой происходит распространение волн в какой-либо среде.

Читайте также:  Дуплексное сканирование вен нижних конечностей

Принцип явления прост: если источник волны и наблюдатель двигаются относительно друг друга, то изменится частота сигнала, воспринимаемая наблюдателем. Она либо увеличивается (приближение источника), либо снижается (удаление источника).

 Это частотное смещение находится в прямой пропорции к скорости источника, перемещающегося по отношению к наблюдателю.

В 1842 году австриец Кристиан Доплер сумел установить и обосновать зависимость частоты колебаний, которую оценивает наблюдатель, от скорости и направления движения источника волн. На этом явлении базируются основные принципы измерений многих параметров космических объектов.

Универсальность закона

Из практических изысканий ясно, что эффект Доплера верен для любого типа волн, в частности, и звуковых. Это легко подтверждается примером движущегося автомобиля с работающей сиреной.

Приближаясь, звук сирены усиливается (уменьшение длины волны), а при удалении её, сила звука сирены будет снижаться (увеличение длины волны). Это же правило работает и для света, и электромагнитного излучения в целом.

 При сближении с наблюдателем светового источника, длина наблюдаемой волны будет становиться короче, и свет будет иметь оттенки спектра в фиолетовых тонах.

Эффект Доплера в астрономии

Открытие Доплера используется при анализе космических объектов. При наблюдении спектра через призму спектрометра, можно увидеть характерные линии химических элементов, находящихся в составе объекта исследования. Именно на это обратил внимание Хаббл. Заметив в спектре атомного излучения изучаемых им галактик красное доплеровское смещение, он сделал вывод, что эти галактики отдаляются.

Смещение в красную сторону спектра тем больше, чем дальше от нас расположены объекты. 

Таким образом, становится ясно, что эффект Доплера – яркий индикатор расширяющейся Вселенной. Если бы Доплеру был известен закон Хаббла, то он и сам бы смог вычислить расстояния до галактик.

Метод Доплера в обнаружении экзопланет

Иначе этот метод называют спектрометрическим измерением лучевой скорости звёзд. Он получил наибольшее распространение для поиска экзопланет, и эффективность его применения исключительно высока.

Метод Доплера позволяет обнаруживать планеты, имеющие массы в несколько масс Земли, которые располагаются близко к своей звезде.

А также, можно «увидеть» планеты-гиганты, имеющие периоды обращения до 10 лет. Двигаясь вокруг своего светила, планета раскачивает его, что вызывает доплеровское смещение в спектре звезды. С помощью этого метода определяется амплитуда колебаний радиальной скорости между звездой и одиночной планетой.  При помощи метода Доплера к концу 2012 года удалось открыть 488 планет в 379 системах планет.

Использование в других областях

Открытие нашло применение в различных областях:

  • Доплеровский радар. Этот прибор улавливает частотные изменения сигнала, отражаемого от предмета. Изменение этого параметра позволяет измерить скорость объекта. Такие радары позволяют определять скорости автомобилей и летательных аппаратов, судов, течений водных потоков.
  • Измерения скоростей потоков. На эффекте Доплера основан метод измерения скорости потоков жидкостей и газов. Это возможно без прямого помещения датчика в сам поток. Определение скорости происходит путём волнового рассеяния.
  • Применение в медицинских исследованиях. Эффект Доплера в медицине распространён достаточно широко. Особенно удачно проводятся акушерские обследования, помогающие отслеживать ход беременности. Для диагностики характеристик кровотока также используют принцип этого эффекта.
  • Методика, использующая ультразвуковые исследования, основанные на эффекте Доплера, называется доплерографией. Его сутью является то, что движущиеся объекты отражают ультразвуковые волны с изменённой частотой.

Принцип Доплера незаменим, если необходимо определять скорости предметов, например:

  • Детекторы движения в различных системах охран;
  • Навигация на подводных судах;
  • Измерения силы ветровых потоков;
  • Определение скоростей передвижения облаков.

Поразительным фактом является то, что эффект Доплера стабильно работает при гигантских колебаниях частот, но мизерных (мм/сек) скоростях источника.

Ещё по теме:

Источник: http://light-science.ru/fizika/effekt-doplera.html

Эффект Доплера

Эффект Доплера в астрономии

Замечали ли вы когда-нибудь, что звук сирены машины имеет различную высоту при её приближении или отдалении относительно вас?

Гудок поезда

Разность частоты гудка или сирены отдаляющегося и приближающегося поезда или машины являются, пожалуй, самым наглядным и распространённым примером эффекта Доплера. Теоретически открытый австрийским физиком Кристианом Доплером, этот эффект впоследствии сыграет ключевую роль в науке и технике.

Эффект Доплера

Для наблюдателя длина волны излучения будет иметь различное значение при различных скоростях источника относительно наблюдателя.

При приближении источника длина волны будет уменьшаться, при отдалении – увеличиваться. Следовательно, с длинной волны меняется и частота.

Поэтому частота гудка приближающегося поезда заметно выше частоты гудка при его отдалении. Собственно, в этом и заключается суть эффекта Доплера.

Эффект Доплера лежит в основе работы многих измерительных и исследовательских приборов. Сегодня его повсеместно применяют в медицине, авиации, космонавтики и даже быту.

С помощью эффекта Доплера работает спутниковая навигация и дорожные радары, аппараты УЗИ и охранная сигнализация. Эффект Доплера получил широко применим в научных исследованиях.

Пожалуй, наиболее он известен именно в астрономии.

Объяснение эффекта

Чтобы понять природу эффекта Доплера достаточно взглянуть на водную гладь. Круги на воде прекрасно демонстрируют все три составляющие любой волны. Представим, что какой-нибудь неподвижный поплавок создаёт круги.

В таком случае период будет соответствовать времени, прошедшему между испусканием одного и последующего круга. Частота равняется количеству кругов, испущенных поплавком за определённый промежуток времени.

Длина волны будет равна разности радиусов двух последовательно испущенных кругов (расстоянию между двумя соседними гребнями).

Представим, что к этому неподвижному поплавку приближается лодка. Так как она движется навстречу к гребням, к скорости распространения кругов прибавится скорость лодки. Поэтому относительно лодки скорость встречных гребней увеличится. Длина волны в тоже время уменьшится.

Следовательно, время, которое пройдёт между ударами двух соседних кругов о борт лодки, уменьшиться. Другими словами, уменьшится период и, соответственно, увеличится частота. Точно также для удаляющейся лодки скорость гребней, которые теперь будут догонять её, уменьшиться, а длина волны увеличится.

Что означает увеличение периода и уменьшения частоты.

Теперь представим, что поплавок расположен между двумя неподвижными лодками. Причём, рыбак на одной из них тянет поплавок к себе. Приобретая скорость относительно глади, поплавок продолжает испускать точно такие же круги.

Однако центр каждого последующего круга будет смещён относительно центра предыдущего в сторону лодки, к которой приближается поплавок. Поэтому со стороны этой лодки расстояние между гребнями будет уменьшено.

Получается, до лодки с рыбаком, что тянет поплавок, придут круги с уменьшенной длинной волны, а значит и с уменьшенным периодом и увеличенной частотой. Аналогичным образом до другого рыбака дойдут волны с увеличенной длиной, периодом и уменьшенной частотой.

Разноцветные звёзды

Спектры различных звезд

Такие закономерности изменения характеристик волн на водной глади в своё время заметил Кристиан Доплер.

Он описал каждый такой случай математически и применил полученные данные к звуку и свету, которые также имеют волновую природу.

Доплер предположил, что таким образом цвет звёзд напрямую зависит от того, с какой скоростью они приближаются или удаляются от нас. Эту гипотезу он изложил в статье, которую презентовал в 1842 году.

Заметим, что насчёт цвета звёзд Доплер заблуждался. Он полагал, что все звёзды излучают белый цвет, который впоследствии искажается из-за их скорости относительно наблюдателя. На самом деле эффект Доплера влияет не на цвет звёзд, а на картину их спектра.

У отдаляющихся от нас звёзд все тёмные линии спектра будут увеличивать длину волны – смещаться в красную сторону. Этот эффект закрепился в науке под названием «красное смещение».

У приближающихся звёзд напротив, линии стремятся к части спектра с более высокой частотой – фиолетовому цвету.

Такую особенность линий спектра, основываясь на формулах Доплера, теоретически предсказал в 1848 французский физик АрманФизо. Экспериментально это было подтверждено в 1868 году Уильямом Хаггинсом, который внёс большой вклад в спектральное исследование космоса. Уже в 20 веке эффект Доплера для линий в спектре получит название «красное смещение», к которому мы ещё вернёмся.

Концерт на рельсах

Эффект Доплера в опыте с поездом

В 1845 году голландский метеоролог Бёйс-Баллот, а затем и сам Доплер, провели серию экспериментов для проверки «звукового» эффекта Доплера. В обоих случаях они использовали, оговорённый ранее, эффект гудка приближающегося и отдаляющегося поезда. Роль гудка им выполняли группы трубачей, которые играли определённую ноту, находясь в открытом вагоне движущегося состава.

Бёйс-Баллот пускал трубачей мимо людей с хорошим слухом, которые фиксировали изменение ноты при различной скорости состава. Затем он повторил этот эксперимент, поместив трубачей на платформу, а слушателей – в вагон. Доплер же фиксировал диссонанс нот двух групп трубачей, которые приближались и отдалялись от него одновременно, играя одну ноту.

В обоих случаях эффект Доплера для звуковых волн успешно подтвердился. Более того, каждый из нас может провести этот эксперимент в повседневной жизни и подтвердить его для себя. Поэтому не смотря на то, что эффект открытие Доплера подвергалось критике со стороны современников, дальнейшие исследования сделали его неоспоримым.

Красное смещение

Красное смещение

Как отмечалось ранее, эффект Доплера применяется для определения скорости космических объектов относительно наблюдателя.

Тёмные линии на спектре космических объектов изначально всегда расположены в строго фиксированном месте. Это место соответствует длине волны поглощениям того или иного элемента.

У приближающегося или удаляющегося объекта все полосы меняют своё положения в фиолетовую или красную область спектра соответственно.

Сравнивая спектральные линии земных химических элементов с аналогичными линиями на спектрах звёзд, можно оценить с какой скоростью приближается или удаляется от нас объект.

Красное смещение на спектрах галактик было обнаружено американским астрономом Весто Слайфером в 1914 году. Его соотечественник Эдвин Хаббл сопоставлял, открытые им же, расстояния до галактик с величиной их красного смещения.

Так в 1929 году он пришёл к выводу, что чем дальше галактика, тем быстрее она удаляется от нас. Как окажется в последствие, открытый им закон был довольно неточен и не совсем верно описывал реальную картину.

Однако Хаббл задал верную тенденцию для дальнейших исследований других учёных, которые впоследствии введут понятия космологического красного смещения.

Космологическое красное смещение

Космологическое красное смещение

В отличие от доплеровского красного смещения, возникающего из-за собственного движения галактик относительно нас, космологическое возникает из-за расширения пространства. Как известно, Вселенная равномерно расширяется по всему своему объёму.

Поэтому чем дальше друг от друга две галактики, тем с большими скоростями они разбегаются друг от друга. Так каждый мегапарсек между галактиками каждую секунду удалят их друг от друга примерно на 70 километров. Это величина называется постоянной Хаббла.

Что интересно, изначально сам Хаббл оценил свою постоянную в целых 500 км/с на мегапарсек.

Это объясняется тем, что он никак не учитывал то, что красное смещение любой галактики складывается из двух разных красных смещений. Помимо того, что галактиками движет расширение Вселенной, они также совершают собственные движения.

Если релятивистское красное смещение имеет одинаковое распределение для всех расстояний, то доплеровское принимает самые непредсказуемые расхождения.

Ведь собственное движение галактик внутри их скоплений зависит лишь от взаимных гравитационных воздействий.

Близкие и далёкие галактики

Галактика Андромеда или M31

Между близкими галактиками постоянная Хаббла практически не применима для оценки расстояний между ними.

К примеру, галактика Андромеда относительно нас имеет суммарное фиолетовое смещение, так как приближается к Млечному Пути со скоростью около 150 км/с.

Если мы применим к ней закон Хаббла, то она должна удаляться от нашей галактики со скоростью 50 км/с, что совсем не соответствует реальности.

Для далёких же галактик доплеровское красное смещение практически неощутимо. Их скорость удаления от нас лежит в прямой зависимости от расстояния и с небольшой погрешностью соответствует постоянной Хаббла.

Так самые далёкие квазары удаляются от нас скоростью большей, чем скорость света. Как это ни странно, это не противоречит теории относительности, ведь это скорость расширяющегося пространства, а не самих объектов.

Читайте также:  Виды гинекологического узи, особенности и нормы

Поэтому важно уметь различать доплеровское красное смещение от космологического.

Также стоит отметить, в случае электромагнитных волн имеют место быть и релятивистские эффекты. Сопутствующие искажение времени и изменение линейных размеров при движении тела относительно наблюдателя также влияют на характер волны. Как и в любом случае с релятивистскими эффектам

Эффект Доплера в астрономии

Несомненно, без эффекта Доплера, с помощью которого произошло открытие красного смещения, мы бы не знали о крупномасштабной структуре Вселенной. Однако не только этим астрономы обязаны этому свойству волн.

Эффект Доплера позволяет обнаружить незначительные отклонения в положении звёзд, которые могут создавать планеты, обращающиеся вокруг них. Благодаря этому было открыто сотни экзопланет. Также он используется для подтверждения наличия экзопланет, предварительно обнаруженных с помощью других методов.

Двойная система коричневых карликов

Эффект Доплера сыграл решающую роль в исследовании тесных звёздных систем. Когда две звезды настолько близки, что их невозможно увидеть по-отдельности, на помощь астрономам приходит эффект Доплера. Он позволяет проследить невидимое взаимное движение звёзд по их спектру. Такие звёздные системы даже получили название «оптически двойные».

С помощью эффекта Доплера можно оценить не только скорость космического объекта, но и скорость его вращения, расширения, скорость его атмосферных потоков и многого другого.

Скорость колец Сатурна, расширения туманностей, пульсации звёзд – всё это измерена благодаря этому эффекту. С помощью него даже определяют температуру звёзд, ведь температура также являет собой показатель движения.

Можно сказать, что практически всё, что связано со скоростями космических объектов, современные астрономы измеряют, использую именно эффекту Доплера.

Источник: http://SpaceGid.com/effekt-doplera.html

Что такое эффект Доплера?

Эффект изменения длины и частоты звуковых волн впервые в 1842 описал Кристиан Доплер, вследствие чего понятию и было присвоено имя австрийского физика.

Данные изменения должны регистрироваться приемником и вызываться движением непосредственного источника волн или движением самого приемника.

Доплером теоретически была обоснована непосредственная зависимость частоты колебаний, которые воспринимаются конкретным наблюдателем, от направления и скорости движения этого наблюдателя по соотношению к источнику колебаний.

Рассматривается два варианта эффекта Доплера:

  1. Оптический – эффект, наблюдаемый при распространении электромагнитных волн.
  2. Акустический – наблюдается во время распространения звуковых волн.

Во время распространения электромагнитных волн берется во внимание относительное движение приемника и источника в вакууме.

А при распространении звука учитывается не только среда, но и движение источника и приемника звуковых волн относительно этой среды.

Если же в определенной среде производится движение заряженных частиц с релятивистской скоростью, лабораторная система должна в этом случае регистрировать так называемое черенковское излучение. Это явление также непосредственно связано с эффектом Доплера.

Эффект Доплера в повседневной жизни человека

Эффект Доплера является основанием для радиолокационных лазерных методов, при помощи которых на Земле измеряются скорости самых разных объектов (самолетов, автомобилей и пр.). Кроме того, понятие может использоваться во время определения температур раскаленных газов.

В современных научных разработках и исследованиях принципы эффекта Доплера также занимают далеко не последнее место. Его могут активно использовать:

  • В области изучения различных явлений Вселенной;
  • В сфере современной навигации;
  • В разных направлениях медицины – принцип используют во многих современных приборах, с помощью которых осуществляют ультразвуковую диагностику сердца и сосудов.

Пронаблюдать же эффект Доплера в повседневной жизни достаточно просто, зная его основной принцип. Учитывая то, что на слух мы воспринимаем частоту звуковых колебаний в виде высоты звука, то можно смоделировать или отследить конкретную ситуацию.

Например, когда проезжающий мимо вас поезд или автомобиль будет издавать громкий звук, то во время приближения этот звук будет выше. Когда транспорт поравняется с вами, звук значительно понизится, а при удалении объекта – будет звучать гораздо ниже.

Стационарный источник звука производит звуковые волны с постоянной частотой FТот же источник звука излучает звуковые волны с постоянной частотой в той же средеИсточник звука преодолевает звуковой барьерИсточник звука теперь преодолел скорость звука, и движется со скоростью в 1,4 Маха

Существуют специальные доплеровские радары, которые способны измерять изменение частот сигналов, отраженных от объекта. При помощи таких приборов можно максимально точно определять скорость самых разных объектов – кораблей, летательных аппаратов, автомобилей. Таким же образом вычисляется скорость речных, морских течений, гидрометеоров и других природных явлений.

Источник: http://www.sciencedebate2008.com/what-is-the-doppler-effect/

Эффект Доплера

ПодробностиКатегория: АкустикаОпубликовано 30.11.-0001 00:00Просмотров: 4221

Звук может восприниматься человеком по-разному, если источник звука и слушатель движутся относительно друг друга. Он может казаться более высоким или более низким, чем есть на самом деле.

Если источник звуковых волн и приёмник находятся в движении, то частота звука, которую воспринимает приёмник, отличается от частоты источника звука. При их сближении частота увеличивается, а при удалении уменьшается. Это явление называется эффектом Доплера, по имени учёного, его открывшего.

Эффект Доплера в акустике

Многим из нас приходилось наблюдать, как изменяется тон гудка поезда, двигающегося с большой скоростью. Он зависит от частоты звуковой волны, которую улавливает наше ухо. При приближении поезда эта частота увеличивается, и сигнал становится более высоким. При удалении от наблюдателя частота уменьшается, и мы слышим более низкий звук.

Такой же эффект наблюдается, когда движется приёмник звука, а источник неподвижен, или когда в движении находятся оба.

Почему изменяется частота звуковой волны, объяснил австрийский физик Кристиан Доплер. В 1842 г. он впервые описал эффект изменения частоты, названный эффектом Доплера.

Когда приёмник звука приближается к неподвижному источнику звуковых волн, за единицу времени он встречает на своём пути больше волн, чем если бы он находился в неподвижном состоянии. То есть он воспринимает более высокую частоту и слышит более высокий тон. Когда же он удаляется, число пересечённых в единицу времени волн уменьшается. И звук кажется более низким.

При движении источника звука к приёмнику он словно догоняет волну, созданную им же. Её длина уменьшается, следовательно, увеличивается частота. Если же он удаляется, то длина волны становится больше, а частота меньше.

Как вычислить частоту принимаемой волны

Звуковая волна способна распространяться только в среде. Её длина λ зависит от скорости и направления её движения.

где ω0 – круговая частота, с которой источник испускает волны;

с – скорость распространения волн в среде;

v – скорость, с которой движется источник волн относительно среды. Её значение положительно, если источник движется навстречу приёмнику, и отрицательно, если он удаляется.

Неподвижный приёмник воспринимает частоту

Если же источник звука неподвижен, а приёмник движется, то частота, которую он будет воспринимать, равна

где u – скорость приёмника относительно среды. Она имеет положительное значение, если приёмник движется навстречу источнику, и отрицательное, если он удаляется.

В общем случае формула частоты, воспринимаемой приёмником, имеет вид:

Эффект Доплера наблюдается для волн любой частоты, а также электромагнитного излучения.

Где применяется эффект Доплера

Эффект Доплера используют везде, где нужно измерить скорость объектов, которые способны излучать или отражать волны. Главное условие для появления этого эффекта – движение источника волн и приёмника относительно друг друга.

Радар Доплера – это прибор, испускающий радиоволну, а затем измеряющий частоту отражённой от движущегося объекта волны. По изменению частоты сигнала он определяет скорость объекта.

Такие радары используют сотрудники ГИБДД, чтобы выявить нарушителей, превышающих допустимую скорость.

Применяют эффект Доплера в морской и воздушной навигации, в детекторах движения в охранных системах, для измерения скорости ветра и облаков в метеорологии и др.

Мы часто слышим о таком исследовании в кардиологии, как доплеровская эхокардиография. Эффект Доплера используют в этом случае для определения скорости движения клапанов сердца, скорости кровотока.

И даже скорость движения звёзд, галактик и других небесных тел научились определять по смещению спектральных линий с помощью эффекта Доплера.

Источник: http://ency.info/materiya-i-dvigenie/akustika/345-effekt-doplera

Что такое эффект Доплера?

В наше время все чаще стали упоминать некий феномен, получивший название «эффект Доплера». Гениальное открытие трудолюбивого и, бесспорно, талантливого деятеля, чье имя и присвоено удивительному изобретению, не только принесло ученому мировую известность, но и стало настоящей находкой, широко используемой ныне во всевозможных научно-технических сферах.

Феномен утверждает следующее: звуковая волна (акустическое действие) или волна электромагнитного излучения (оптическое действие) распространяется в воздухе с неизменной скоростью, зависящей лишь от свойств окружающей среды. Впрочем, длина волны и ее звуковая частота могут значительно варьироваться в результате смены положения:

• источника, из которого исходит звук;
• непосредственного наблюдателя.

Так, в случае приближения наблюдателя к источнику повышается частота волны, в то время как отдаление их способствует понижению частоты. «Эффект Доплера» легко увидеть в действии, когда мимо человека проезжает автомобиль с включенной сиреной. Допустим, она издает не меняющийся тон определенной высоты.

Когда машина остается неподвижной относительно человека, его ухо воспринимает тон, непосредственно издаваемый сиреной. Но как только автомобиль начнет приближение к нему, частота звука усилится, и человек услышит более громкий тон, чем истинный.

И наоборот, при отдалении машины звуковые волны приобретут низкую частоту, и ему будет слышен более тихий тон.

Как был открыт и доказан практически «эффект Доплера»? Основываясь на итогах проведенных им наблюдений за течением волн на водной поверхности, Кристиан Доплер сделал предположение, что полученные результаты можно использовать и применительно к волнам, которые распространяются в воздушной среде.

 На базе волновой теории в 1842 году он пришел к такому выводу: с приближением светового источника к наблюдателю увеличивается наблюдаемая частота, а с отдалением она, напротив, уменьшается.

Таким образом, ученый дал теоретическое объяснение зависимости частоты звуковых и электромагнитных колебаний, воспринимаемых наблюдателем, от направления и скорости движения источника этих волн относительно самого наблюдателя.

Научное доказательство эффекта состоялось через три года, в 1845 году. Тогда ученый Кристиан Баллот, голландец по происхождению, провел следующий эксперимент:

1. в незакрытый ж/д вагон он поместил одну группу трубачей; 2. на платформе осталась другая группа трубачей; 3. предполагалось, что поезд проедет близь платформы; 4. музыканты в это время должны были взять любую тональность;

5. перед наблюдателем была поставлена задача записать на бумаге услышанное.

В результате выяснилось, что то, как испытуемые воспринимали высоту звукового тона, прямо пропорционально зависело от того, на какой скорости движется поезд, как и предполагал ученый.

Великое открытие Доплера и сегодня продолжает играть необыкновенно важную роль в различных областях человеческой жизни. Вот лишь некоторые возможности его применения на практике:

• Астрономы с его помощью определили постоянную расширяемость Вселенной, вследствие чего звезды отдаляются друг от друга.

Именно благодаря эффекту Доплера мы наблюдаем красное смещение далеких галактик, что позволяет предположить, что наша вселенная расширяется

• Благодаря такому эффекту становится возможным успешное определение параметров движения планет и летательных космических аппаратов.

• Принцип действия обыкновенных радаров, повсеместно используемых сотрудниками ГИБДД с целью определения скорости движения автомобиля, также основан на доплеровском открытии.

• Наконец, его применяют в медицинских целях – при помощи проведения УЗИ различают вены и артерии во время проведения инъекций.

Источник: https://mydiscoveries.ru/chto-takoe-effekt-doplera

Доплера эффект – «Энциклопедия»

ДОПЛЕРА ЭФФЕКТ, изменение частоты колебаний ω или длины волны λ, воспринимаемой наблюдателем при движении источника колебаний и наблюдателя относительно друг друга. Возникновение Доплера эффекта проще всего объяснить на следующем примере.

Пусть неподвижный источник в однородной среде без дисперсии испускает волны с периодом Т0 = λ0/υ, где λ0 – длина волны, υ – фазовая скорость волны в данной среде. Неподвижный наблюдатель будет принимать излучение с таким же периодом Т0 и той же длиной волны λ0.

Если же источник S движется с некоторой скоростью Vs в сторону наблюдателя Р (приёмника), то длина принимаемой наблюдателем волны уменьшится на величину смещения источника за период Т0, то есть λ = λ0–VST0, а частота ω соответственно увеличится: ω = ω0/(1 – Vs/υ).

Читайте также:  Узи яичников: норма и патология

Принимаемая частота увеличивается, если источник неподвижен, а наблюдатель приближается к нему. При удалении источника от наблюдателя принимаемая частота уменьшается, что описывается той же формулой, но с изменённым знаком скорости.

Реклама

В общем случае, когда и источник, и приёмник движутся относительно неподвижной  среды  с  нерелятивистскими скоростями VS и VP под произвольными углами θS и θР (рис.), принимаемая частота равна (1):

Максимальное увеличение частоты происходит при движении источника и приёмника навстречу   друг  другу  (θS = 0, θР = π),  а уменьшение – при взаимном удалении источника и наблюдателя (θS = π, θР = 0). Если же источник и приёмник движутся с одинаковыми по величине и направлению скоростями, Доплера эффекта отсутствует.

При скоростях движения, сравнимых со скоростью света с в вакууме, необходимо принять во внимание релятивистский эффект замедления времени (смотри Относительности теория); в результате для неподвижного наблюдателя (VP = 0) принимаемая частота излучения (2)

где β = VS/с. В этом случае смещение частоты имеет место и при θS = π/2 (так называемый поперечный Доплера эффект). Для электромагнитных волн в вакууме в любой системе отсчёта υ = с и в формуле (2) под VS нужно понимать относительную скорость источника.

В средах с дисперсией, когда фазовая скорость υ зависит от частоты ω, соотношения (1), (2) могут допускать несколько значений ω для заданных ω0 и VS то есть в точку наблюдения под одним и тем же углом могут приходить волны с разными частотами (так называемый сложный Доплера эффект).

Дополнительные особенности возникают при движении источника со скоростью VS > υ, когда на поверхности конуса углов, удовлетворяющих условию cosθS = υ/VS, знаменатель в формуле (2) обращается в нуль, – имеет место так называемый аномальный Доплера эффект.

В этом случае внутри указанного конуса частота растёт с увеличением угла θS, тогда как при нормальном Доплера эффекте под большими углами θS излучаются меньшие частоты.

Разновидностью Доплера эффекта является так называемый двойной Доплера эффект – смещение частоты волн при отражении их от движущихся тел, поскольку отражающий объект можно рассматривать сначала как приёмник, а затем как переизлучатель волн. Если ω0 и υ0 – частота и фазовая скорость волны, падающей на плоскую границу, то частоты ωi вторичных (отражённых и прошедших) волн, распространяющихся  со  скоростями  υi,  определяются  как (3)

где θ0, θi – углы между волновым вектором соответствующей волны и нормальной составляющей скорости V движения отражающей поверхности.

Формула (3) справедлива и в том случае, когда отражение происходит от движущейся границы изменения состояния макроскопически неподвижной среды (например, волны ионизации в газе).

Из неё следует, в частности, что при отражении от границы, движущейся навстречу волне, частота повышается, причём эффект тем больше, чем меньше разница скоростей границы и отражённой волны.

Для нестационарных сред изменение частоты распространяющихся волн может  происходить  даже  для неподвижных излучателя и приемника – так называемый параметрический эффект Доплера.

Доплера эффект  назван в честь К. Доплера, который впервые теоретически обосновал его в акустике и оптике (1842). Первое экспериментальное подтверждение Доплера эффекта в акустике относится к 1845. А.

Физо (1848) ввёл понятие доплеровского смещения спектральных линий, которое было обнаружено позднее (1867) в спектрах некоторых звёзд и туманностей. Поперечный Доплера эффект  был обнаружен американскими физиками Г. Айвсом и Д. Стилуэллом в 1938. Обобщение Доплера эффекта на случай нестационарных сред принадлежит В. А.

Михельсону (1899); на возможность сложного Доплера эффекта в средах с дисперсией и аномального Доплера эффекта при V > υ впервые указали В. Л. Гинзбург и И. М. Франк (1942).

Доплера эффект  позволяет измерять скорости движения источников излучения и рассеивающих волны объектов и находит широкое практическое применение. В астрофизике Доплера эффект  используется для определения скорости движения звёзд, а также скорости вращения небесных тел.

Измерения доплеровского красного смещения линий в спектрах излучения удалённых галактик привели к выводу о расширяющейся Вселенной. Доплеровское уширение спектральных линий излучения атомов и ионов даёт способ измерения их температуры.

В радио- и гидролокации Доплера эффект  используется для измерения скорости движущихся целей, для определения их на фоне неподвижных отражателей и т. п.

Лит.: Франкфурт У. И., Френк А. М. Оптика движущихся тел. М., 1972; Угаров В. А. Специальная теория относительности. 2-е изд. М., 1977; Франк И. М. Эйнштейн и оптика // Успехи физических наук. 1979. Т. 129. Вып. 4; Гинзбург В. Л. Теоретическая физика и астрофизика: Дополнительные главы. 2-е изд. М., 1981; Ландсберг Г. С. Оптика. 6-е изд. М., 2003. 

Н. С. Степанов.

Источник: http://knowledge.su/d/doplera-effekt

Эффект Доплера и его применение :

Эффектом Доплера называют определенное физическое явление, характеризующее изменение длины и частоты волн, которые регистрируются приемником при условии, что источник волн и их приемник движутся относительно друг друга.

Эффект Доплеранаблюдается при распространении именно волновых явлений – света, звука, радиоволн и так далее, но не частиц, имеющих массу. Эту зависимость первым теоретически обосновал австрийский физик Кристиан Доплер в 1842 году. В честь него она, собственно, и была названа.

Десятилетием позже эффект был более детально разработан в трудах француза Армано Физо, а на практике проверен уже в начале XX века.

Эффект Доплера в акустике

Скорость света составляет 300 000 км в секунду, что, по представлениям современной науки, является максимальной скоростью в природе вообще. Это затрудняет наблюдение изменения частоты волн света невооруженным взглядом.

Однако эффект Доплера можно наблюдать не только на примере распространения фотонов или электромагнитных волн. Ему подчинены и звуковые колебания. Обычно для популярного объяснения используется пример сирены автомобиля.

Представьте, что вы стоите на обочине дороги, к вам приближается автомобиль с включенной сиреной. Когда он находится еще далеко от вас, звук сирены будет казаться низким и глухим.

Но по мере приближения частота Доплера (издаваемых волн) будет повышаться (то есть, буквально, расстояние между гребнями волны будет сокращаться), и вы будете слышать все более высокий тон звука.

Однако когда автомобиль минует вас и вновь станетудаляться, соответственно, частота звука вновь станет понижаться. Это происходит по причине того, что издаваемый звук сперва как бы «догоняется» автомобилем, что делает расстояние между гребнями (впадинами) волны все выше, а потом, наоборот, «убегает» от него, и волна «разглаживается». Это и есть эффект Доплера в нашей повседневной жизни.

Значение закономерности

Эффект Доплера является вовсе не сухим научным фактом, известным ученым. Так, например, он широко используется в некоторых современных радарах, основанных на измерении частоты распространения волн.

Изменение этой частоты говорит о скорости объекта и ее изменении. Так определяется скорость автомобилей службами ГИБДД, самолетов, кораблей, течений воды в реках и морях и так далее.

Охранные сигнализации, реагирующие на движение в помещении, также используют эффект Доплера.

Открытие Хаббла

Однако, пожалуй, наиболее значимым открытием, сделанным благодаря знаниям этой зависимости, стал так называемый закон Хаббла. В 1929 году американский астроном Эдвин Хаббл, наблюдая звездное небо в свой телескоп, обнаружил удивительнейшуювещь. Далекие галактики были окутаны красноватой дымкой.

Так называемое красное смещение, предсказанное еще в 1912-1914 годах другим американцем, Весто Слайфером, означало, что эти галактики буквально отдаляются от нашей. Спектр волн нашего видимого света укладывается в промежуток между 380 и 780 нм.

Все, что ниже, называют ультрафиолетовым излучением, выше – инфракрасным. Смещение доходящего до нас света галактики в красную сторону говорит об увеличении частоты и, таким образом, аналогично звуку, о ее отдалении. Будь это смещение синим, галактики бы приближались.

Но, что интересно, Эдвин Хаббл развернул свой телескоп на другие точки Вселенной и обнаружил, что почти все галактики отдаляются и от нашей, и друг от друга, более того, чем дальше находится в данный момент галактика, тем сильнее красное смещение, то есть скорость ее удаления увеличивается.

Это существенно способствовало становлению в научном мире самой популярной на сегодняшний день теории о происхождении нашего мира: теории Большого взрыва.

Источник: https://www.syl.ru/article/94649/effekt-doplera-i-ego-primenenie

Эффект Доплера пример

Эффект Доплера

Представьте себе, что вы шофер машины «скорая помощь» и вам приходится на большой скорости ехать по заполненным машинами улицам большого города.

Вы включаете сирену, которая начинает свой упрямый ровный рев, и по дороге к больнице проезжаете мимо толпы людей на тротуарах.Теперь представьте себе, что вы один из толпы на тротуаре.

Вы стоите у перехода и ждете момента, когда можно будет перейти улицу. Но сначала надо пропустить мчащуюся «скорую».

Рев ее сирены слышен издалека. Но странное дело, чем ближе подъезжает автомобиль с красным крестом, тем выше становится звук сирены. Когда машина начинает удаляться, то же самое повторяется, но наоборот. По мере удаления машины звук сирены становится все ниже и ниже, пока совсем не исчезнет. При этом водитель «скорой» не замечает никаких изменений. Для него качество звука не меняется

А вот сторонний наблюдатель слышит, как нарастает высота звука и как затем тональность по мере удаления падает. Звуковые волны распространяются в воздухе так же, как морские волны по поверхности воды.

Так что же происходит на самом деле. Кто правильно слышит? Водитель или пешеход? Меняется ли тональность звучания сирены? Правы оба. Точнее, никто не ошибается: и водитель и пешеход слышат именно то, что они и должны слышать. Разница в восприятии происходит из – за эффекта Доплера. То, что мы слышим как звук, это в действительности волны, распространяющиеся в воздухе.

Сирена заставляет колебаться молекулы воздуха. Звуковые волны распространяются в воздухе так же, как морские волны по поверхности воды.

Волна — это область разрежения, которая затем становится областью сжатия. Процесс повторяется много раз в одну секунду и распространяется. Это и есть звуковая волна.

Чем ближе находятся друг к другу одинаковые участки волн, тем выше звук, то есть тем больше его частота.

В нашем случае при приближении «скорой» волны звука становятся ближе друг к другу для пешехода, потому что скорости перемещения машины и звука складываются. Чем меньше расстояние между звуковыми волнами, тем выше частота и тем выше звуковой тон.

При удалении машины расстояние между волнами по мере удаления становится все больше, то есть частота по степенно уменьшается и звук становится ниже. Люди, находящиеся в машине, и источник звука неподвижны относительно друг друга. Поэтому никаких изменений тональности не происходит.

Чтобы стали слышны изменения тональности, слушатель и источник звука должны перемещаться относительно друг друга.

Есть ли на земле осколки других планет?

Эффект Доплера присущ не только звуковым волнам

Возьмем для примера световые волны. Если бы на машине «скорая помощь» вместо сирены был установлен фонарь желтого цвета, то при сближении с наблюдателем спектр фонаря смещался бы в синюю сторону, а при удалении — в красную.

При обычных окружающих нас явлениях скорости смещения относительно невысоки, поэтому мы не замечаем изменений спектра света.

Но если бы скорость перемещения машины «скорая помощь» приближалась к скорости света или была бы сопоставима с ней, то мы заметили бы искомые изменения.

Частота — это число гребней волн, прошедших через определенную точку в течение одной секунды. Чем выше частота, тем выше тональность звука или тем более синим, становится свет. Водитель в этом случае видел бы постоянно падающий на дорогу желтый свет.

Но движущаяся машина спрессовывала бы волны перед собой и наблюдатели, неподвижные во время приближения к ним источника света, видели бы смещение спектра света в высокочастотную синюю сторону. По мере удаления машины наблюдатель бы отметил возвращение цвета фонаря от синего к желтому.

Постепенно этот цвет перешел бы в красный, исчезая за горизонтом.

Источник: https://www.voprosy-kak-i-pochemu.ru/effekt-doplera/

Ссылка на основную публикацию
Adblock
detector